Fogalomtár

Fogalomtár

 

AC

A váltakozó áram rövidítése. A napelemek közvetlenül egyenáramot (DC) szolgáltatnak; ahhoz, hogy háztartási gépeinket használni tudjuk róluk, egy invertert kell alkalmazni, ami szinuszos váltakozó áramot állít elő.

Ad-Vesz (szaldós) mérő

Kétirányú mérésre alkalmas fogyasztásmérő. Hálózatra tápláló rendszer esetén a fölösleges (háztartási fogyasztáson felül) termelt villamos energiát a hálózatba tápláljuk vissza. A fogyasztó által megtermelt villamos energiát az áramszolgáltató átveszi – a mérés elvéből eredően – a szolgáltatott egységáron. A naperőmű által termelt villamos energia és a közcélú hálózatból vételezett villamos energia különbözetét fizetjük, többlet termelés esetén pedig visszakapjuk a szolgáltatótól.

Akkumulátor

Energiatároló eszköz; mely speciális, ciklusálló változat. Képes hosszú időn keresztül jó hatásfokkal feltöltődni, majd kisülni akár tároló képessége 20%-áig is. Ezek az akkumulátortípusok a ciklusállóságot jóval nagyobb tömegű ólommal tudják biztosítani, így sokkal nehezebbek az azonos tároló képességű gépjárműindító savas ólomakkumulátoroknál és költségesebbek is. Az autóakkumulátorok 1-1,5 év alatt tönkremennek a szél- és napenergiát hasznosító rendszerekben. Ez idő alatt is nagyon rossz hatásfokkal és nagy energiaveszteséggel (önkisülés) üzemelnek. Ezzel ellentétben a korszerű szolár savas ólomakkumulátorok 6…10 évet bírnak ki.
Szolár célra (szigetüzemű rendszerekhez) zselés akkumulátorokat is alkalmazunk, ez gondozásmentes, de ára duplája a savasnak.

Árnyékolás

A közvetlen napsugárzást megakadályozzák a napelemeket árnyékoló tárgyak, például kémények, fák és antennák. Az ebből eredő veszteség akár egész panelek teljesítményét is képes lerontani, így erre különösen kell figyelni a tervezés során.

DC

Egyenáram rövidítése. A napelemek közvetlenül egyenáramot állítanak elő, akkumulátorban is ilyen energia tárolható, azonban fogyasztóink jellemzően váltakozóáramot igényelnek.

Dőlésszög

A vízszintes és a napelem síkja által bezárt szög. A telepítési hely határozza meg, mi az optimális beállítás, hazánkban az a szög 30-35° között van.

Elektromos áram

Az elektromos töltéssel rendelkező részecskék (töltéshordozók) sokaságának elektromos mező hatására kialakuló rendezett mozgása. Az áramlás irányának váltakozása alapján beszélhetünk váltakozó-, vagy áramlás irányának állandósága esetén egyenáramról.

Hatásfok

A szolár technológiában a cellára, panelre értelmezett fogalom η, mely megmutatja, hogy a beeső fény-teljesítmény hány százaléka alakul át elektromos energiává.
A hatásfokot a környezeti és a konstrukcióval összefüggő tényezők egyaránt befolyásolják. A környezeti tényezők közül a hőmérséklet a legfontosabb, de ide lehet sorolni a cella felületének tisztaságát és a megvilágítás erősségét is.

Hőszivattyú

A hőszivattyú olyan berendezés – kalorikus gép –, mely arra szolgál, hogy az alacsonyabb hőmérsékletű környezetből hőt vonjon ki és azt magasabb hőmérsékletű helyre szállítsa. Használatának célja a hőenergiával való gazdálkodás, melynek során hűtési energiát fűtésben (pl. melegvíz-készítésben) fel lehet használni, illetve környezeti hőt lehet hasznosítani. A hőszivattyú elvileg olyan hűtőgép, melynél nem a hideg oldalon elvont, hanem a meleg oldalon leadott hőt hasznosítják. Minden olyan fizikai elv alapján készülnek hőszivattyúk, melyeket a hűtőgépeknél is használnak.

Inverter (DC/AC konverter)

A napelemek és a hálózat közötti kapcsolatot biztosító eszköz; elsődleges feladata a modulok szolgáltatta egyenáram átalakítása szinuszos váltakozó árammá. Hálózatra kapcsolt esetben az inverter további szinkronizációs és védelmi feladatokat is ellát, ami biztosítja az erőmű illeszkedését az áramszolgáltatói követelményekhez.

Kristályos napelem

Alapanyaga a tiszta kristályos szilícium. Struktúrájától függően különbséget teszünk monokristályos és polikristályos napelemek között. Általánosságban elmondható, a si-kristályos napelem modulok nagyobb hatékonyságúak, mint a vékonyfilmes napelemek. A legújabb kutatások szerint a szilícium alapú napelemek terrawattos (millió MW) léptékű elterjedését a szilícium mennyisége nem fogja korlátoznim mert az széles körben elérhető és bőségesen áll a világ rendelkezésére (Jacobson, M.Z.-Delucchi, M.A. 2010). A jelenlegi 2.000 tonnás felhasználás az ipar teljes igényének 10%-át teszi ki, de a napelemes felhasználás növekedésének üteme 20-25% körüli (Ristau, O. 2011).

kW

kilowatt = 1.000 watt, teljesítmény mértékegysége. 1. 000 kW = 1MW (megawatt).

kWh (kW/h = kW/óra)

A kilowattóra rövidítése. Az egy órán át 1.000 W – termelt vagy fogyasztott – energiának felel meg és 3,6 millió Joule energiával egyenlő.

kWp (Wp)

Standard mérési körülmények között (1.000 W/m2 besugárzott energia és 25 C° modulhőmérséklet) a maximális leadott teljesítménye egy szolár modulnak vagy erőműnek. Ezredrésze a Wp; a modulok jellemzésére ez a mértékegység a használatosabb.

Megtérülési idő

Az az időtartam, amikorra a befektetésünk összegét megtermeli a naperőmű, azaz amortizálódik. Kiszámításánál figyelembe kell venni a hozamon felül az eszközök öregedését, a villamos energia árának növekedését és még számos további tényezőt is (pl. állandó üzemi költségek: biztosítás, karbantartás stb.).

Modul hűtése, szellőztetése

A napelemek hatásfokára negatív befolyással van a hő. Ezért a napelemeket úgy kell elhelyezni, hogy mögöttük legyen hely a légáramlatnak (kémény hatás), így hűtve a napalemünk hátlapját.

Monitoring

A teljes napelemes rendszer megfigyelésére és adatrögzítésére szolgáló informatikai rendszer összesége.

Napelem

A napelem egy olyan villamos eszköz, amely a Nap sugárzását közvetlen elektromos energiává alakítja át a fényelektromos jelenség alkalmazásával. A napelem teljesítménye függ annak típusától, méretétől, a sugárzás intenzitásától és a sugárzott fény hullámhosszától, valamint annak beesési szögétől.

Rögzítő rendszerek

A modulok elhelyezhetők sík felületre (talaj, síktető) vagy ferde alapra (jellemzően tető). A be- és felépítést erre a célra kifejlesztett, moduláris megoldások segítik. Lényeges tulajdonság a korrózió- és időállóság, valamint az elmozdulás-mentes rögzítés és az ergonómikus megjelenés.

Túlfeszültség
Az az eset, amikor a villamos berendezés kapcsain nagyobb feszültség jelenik meg mint az üzemi (hálózati) feszültség. Ez keletkezhet villámlás, elektromágneses csatolás, indukció és statikus hatások következtében. Ezen hatások károsak a villamos berendezések számára, így védekezni szükséges ellene.

Túlfeszültség védelem

Naperőmű esetén elsősorban a villámlás okozta túlfeszültség esetével kell foglalkoznunk. A rendszer és az ingatlan védelme szempontjából hatékony megoldás az inverterek előtt, a DC vezetékeket egyenként túlfeszültség-levezető berendezéssel ellátni.